红外成像仪:红外图像算法浅析
本文对对常用的几种算法进行了分析和比较,其中基于辐射源的方法较为常用,其中包括两点校正法,多点校正法,非线性拟合校正法,和低次插值校正法等,基于他们各自的特点,此论文中选用了精度相对比较高的一种:非线性拟合校正法。这种校正方法考虑了光敏单元的非线性响应,使得其校正效果比传统的两点校正算法具有更大的动态范围和更高的精度,同时,每个光敏单元的校正只需要3次乘法和2次加法,运算量很小,很容易实时实现 。具体的公式推导可以参考论文。。。。。
噪声去除及算法改进:采用较为常用的中值滤波法。中值滤波的特点:能有效抑制图像噪声,提高图像信噪比。它是一种邻域运算,是把邻域中的像素按灰度等级进行排序,然后选择该组的中间值作为输出像素值。它能减弱或消除傅里叶空间的高频分量,但不影响低频分量。因为高频分量对应图像中的区域边缘和灰度值具有较大较快变化的部分,因此该滤波可将这些分量滤除,使图像平滑。这里可以概括为此算法可以实现图像的平滑处理。原理:首先确定一个以某个像素为中心点的邻域,一般为方形邻域;然后将邻域中的各个像素的灰度值进行排序,取其中间值作为中心点像素灰度的新值,这里的邻域通常被称为窗口;当窗口在图像中上下左右进行移动后,利用中值滤波算法可以很好地对图像进行平滑处理。改进:图像中的边缘和噪声都使频率比较高的部分,通过改进可以减少边缘的错误改进。由于噪声都由一个特点,就是几乎都是领域像素的极值而边缘不是,因此可以利用这个特性来改进中值滤波。具体改进的原理:当处理该像素的时候,看该像素是否是滤波窗口所覆盖下邻域像素的极大或者极小值,如果是,则用正常的中值滤波处理该像素。如果不是,则不处理。
灰度变换:可分为普通线性变换、分段线性变换和非线性变换。采用普通线性变换,用一个线性单值函数,对图像的每一个像素灰度作线性扩展,将有效地增强图像的对比度,改善图像视觉效果。普通的先行变换的原理是将图像中的低灰度值和高灰度值像素的灰度级通过先行变换进行了适当的归并,这种两端截取式的拉伸方法虽然在一定区域内丢失了一小部分的信息,但是却换取了图像中绝大部分像素的灰度层次感。如果我们只对图像中某些灰度级的图像感兴趣,就可以按照灰度级的变化特点,将他们分段进行先行变换,从而增强图像中感兴趣的部分,抑制不感兴趣的灰度区间。直方图均衡化属于非线性变换,它是一种比较好得图像增强算法,在实际中也比较常用。原理:直方图均衡的作用是改变图像中灰度概率分布,使其均匀化。其实质是使图像中灰度概率密度较大的像素向附近灰度级扩展,因而灰度层次拉开,而概率密度较小的像素的灰度级收缩,从而让出原来占有的部分灰度级,这样的处理使图像充分有效地利用各个灰度级,因而增强了图像对比度。
伪彩色变换:对于灰度图像,我们常用灰度级—彩色变换的方法进行为彩色变换。原理:将图像的灰度值通过红、绿和蓝变换函数从而生成RGB色彩空间的三个分量,或通过色彩三属性明度、色相、纯度变换函数生成色彩空间的三个分量。这样的话,只要保证变换函数是连续的,则生成的调色板彩色编码就是连续的。因而,其关键在于变换函数的构造。具体的变换函数可以参考论文中。。。。。。
FPGA的实现:这里没有采用dsp来进行硬件的实现,这里可以简要的说明,dsp处理数据的速度虽然最大,但相对于处理复杂的数据,不同类型的数据时要比FPGA慢,所以这里选用FPGA来实现。系统的整体框图:
FPGA可以实现红外图像的灰度变换、中值滤波,以及伪彩色变换等。VGA控制器主要是实现数字信号到模拟信号的转化,转化后的图像数据可以通过配置的LCD的VGA接口进行图像显示。
电源部分:LDO电源和开关电源两者都可以选用。LDO电源成本低,输出电压噪声超低,缺点是低效率,且只能用于降压的场合。开关电源在电流负载较大时,这些损耗都相对较小,所以电感式开关电源可以达到95%的效率。但是在负载较小时,这些损耗就会相对变得大起来,影响效率。本设计中选用了后者,具体电路设计可参考论文。。。。。
SRAM接口电路的设计:这里要知道为什么没有选用常用的SDRAM,因为SDRAM虽然容量大、价格便宜,但是时序比较复杂,能完成一般读写功能,如果涉及到复杂的算法,读写时序很难短时间实现,且不保证效果,而SRAM的时序简单,容易控制,整个存储系统比较稳定。本设计选用IS6lLv25616AL,具体与FPGA连接可参照论文。
FLASH接口电路设计:本设计选用S29ALO32DFLASH芯片,芯片特点:容量4M*8sbit,有22为地址线,8位数据线,有独立的复位信号。。。。。。
图像显示电路:首先需要把数字信号转换为模拟信号,这里选用ADV7123
FPGA配置电路设计:由于选用的SRAM有易失性,所以每次上电要重新加载数据,这里选用AS,PS,JTAG方式进行数据配置。配置电路可以参考论文。
外围接口电路设计:除了上面系统的基本外围电路外,引出的接口包括RS232接口,SPI接口,摄像头低压差分信号接口,以及和其他处理器的接口等。其中,RS232串行接口的设计是为了方便与其他控制器的通信以及系统的调试,该串口采用的MAX3232芯片进行设计
——杰创立红外成像仪